Urbane Mikrometeoriten (MM) Sternenstaub in Perfektion

Vortrag Astronomische Vereinigung Aarau
Fachgruppe Meteorite
28. August 2024, Daniel Thommen

© Jon Larsen, Jan Kihle, Oslo

Inhalt

Einleitung

- 1. Pioniere
- 2. Entstehung MM
- 3. Wo man sie findet
- 4. Wie man sie findet
- 5. Dokumentation
- 6. Was wir nicht suchen
- 7. Typisierung MM
- 8. MM im Detail

Einleitung

Zu Mir:

- Daniel Thommen, Ramlinsburg BL, Feinmechaniker und Ingenieur in Pension
- Interesse an Fossilien, Mineralien, Musik, Motorradfahren, Sterne und Weltall
- Seit 2020 Suche Mikrometeorite
- Sammlung knapp 1000 Stück

1. Pioniere

Abkürzung MM = Mikrometeorite

- 1872-76 Meeresboden-Sammlung: Erste MM durch John Murray «Challenger-Expedition», Bestimmung durch chemische Analysen.
- Seit ca. 1980 technische Analysen für Mikroteile
- Ab 1988 Antarctica-Sammlung: Basis für die MM Typisierung durch Grange.
- Ab 2000 Gletscher Sammlungen (Eisschmelze)
- Mehr dazu: «Micrometeorite collections: a review and their current status" 13 May 2024

1. Pioniere (urbane MM)

Jon Larsen, Oslo (rechts)

- Maler, Musiker und Wissenschaftler
- 2015 Nachweis urbane MM

Jan Kihle, Oslo (links)

- Geologe und Entwicklungs-Wissenschaftler
- Fototechnik: hochauflösende Fotografie bis 10'000x.

Gute Freunde, denen ich diesen Abend widme!

© alle Bilder sind von Jon Larsen und Jan Kihle, falls nicht anders vermerkt.

1. Pioniere (urbane MM)

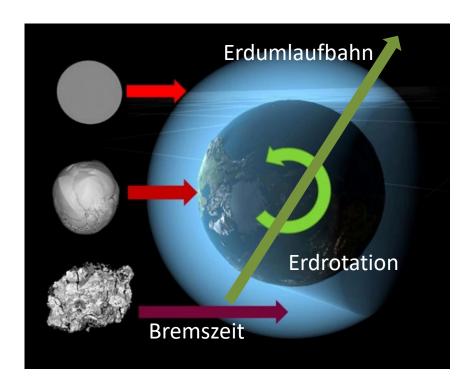
Ausgangslage schwierig:

- Die Wissenschaft: es ist unmöglich
- Grösse? Aussehen? Oberflächen?
 Farbe?
- Bisherige MM ohne optische Merkmale
- Durchbruch 2015: Nachweis urbaner MM's durch Jon Larsen / Analysen Matthew J. Gange London.
- Methoden Suche und Bestimmung
- Freie Publikationen aller Erkenntnisse
- «Mikrometeorite für Alle»

1. Pioniere urbaner MM

- 10'000 fache Vergrösserung der MM durch Kiehle / Larsen
- Erkennen optischer Merkmale
- Eindeutige
 Identifikations Merkmale und
 Typisierung

© Jon Larsen, Jan Kihle, Oslo


- Grossteil Masse interplanetaren Staubs sind MM
- Älteste Materie im All
- 20-40'000 to / Jahr kosmischer Staub erreicht Erdatmosphäre mit ca. 11-72 km/Sekunde!
- ca. 10% erreicht Erdoberfläche also ca. 2-4000 to/Jahr mit ca. 7 km/Stunde
- 1 MM mit D=0.1mm / m2 / Jahr
- Auffindbar: nur ein Bruchteil davon

© Jon Larsen, Jan Kihle, Oslo

Faktoren Form, Typ:

- Zusammensetzung
- Eintrittswinkel / Geschwindigkeiten
- Eigenrotation
- Temperatur,
 Materialverlust,
 Fall-Dauer

© Jon Larsen, Jan Kihle, Oslo – Modifiziert D.Thommen

Eintritt in die Atmosphäre der Erde:

komplettes Aufschmelzen – inkl. Kernbereich

nur Oberfläche geschmolzen,

der Kern bleibt Ursprünglich

Dazwischen gibt es alle Varianten!

2000+ °C

2000°C

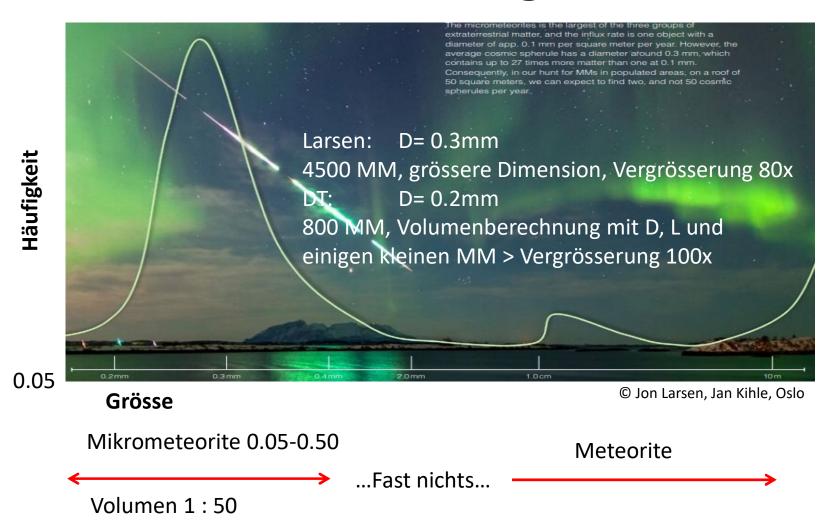
1900°C

1800°C

1800°C

1800°C

1500°C


1500°C

1500°C

1000°C

1000

© Jon Larsen, Jan Kihle, Oslo

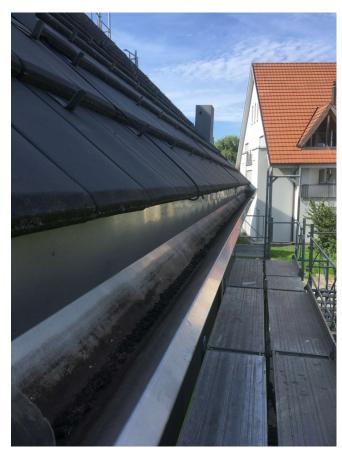
Herkunft:

- Erst wenige Analysen über die Herkunft von MM publiziert.
- Anzahl Spezialisten = Anzahl Meinungen!
- Noch wenig erforscht
- Am Wahrscheinlichsten wohl Kuipergürtel / Astroidengürtel Mars und Jupiter

• Gletscherzungen – Schmelzzonen

© D.Thommen

Strassen / Plätze:


- Verlauf
 Entwässerung
- Feine Ablagerungen
- + Ungefährlich
- Sehr viel Material
- Sehr vielStörmaterial
- Ungeziefer...
- Wenige MM

© D.Thommen

Schulhaus Ramlinsburg

- Gerüst, Ziegeldach
- Sehr Steil
- 5-10 Jahre unberührt
- Wetterseite 1 MM
- Gegenseite 30 MM

© D.Thommen

Simmental Alp

- Gefälle moderat
- Bodeneben, gross!
- Rinne mit Dellen
- Wetterseite zu hoch
- Diese Rinne 45 MM,

Reiterhof / Rest. Eigenhof

- Gefälle Mittel
- Höhe 3m!
- Rinne mit Dellen/Rissen
- Ca. 5-10 Jahre unberührt
- Wetterseite 20 MM
- Gegenseite 65 MM,
- > Material als Beispiel

© D.Thommen

Eptinger Mineralwasser

- Kuppeldach
- Zugang ohne Leiter
- Viel nicht magnetischer Abrieb
- Erdalter MM max 6 Mt.
- Oberes Dach 30% MM
- Unteres Dach 70% MM
- Pro ½ Jahr ca. 70-80 MM

© D.Thommen

Ungeeignete Dächer

- Eternit vor 1995 Asbest
- Viel magnetischer Abrieb!
- Sehr flache Neigung > Wind, Wetter
- Schwer zugänglich, hohe Dachrinnen

Beste Dächer

- Geringe Höhe (Sicherheit)
- Grossflächige Flachdächer
- Hochgezogene Fassade > Windschutz
- Alte verbogene Dachrinnen,
- Laubschutz

Beispiel:

Elternhaus meiner Frau: 5-10 Jahre letzte Reinigung -0- MM gefunden Mit Wind / Wasser verloren

Entnahme schnelle Variante (Trocken)

- Dachrinne / Strasse: mit Magnet
- Flachdach: Wischen + Magnet
- Waschen Trocknen Fertig
- Mikroskop Suche MM
- + Wenig Aufwand, wenig Material
- Keine nicht magnetische MM
- nicht alle MM erfasst
- Nur bei nicht magnetischem Untergrund möglich

© Jon Larsen, Jan Kihle, Oslo

Entnahme FEUCHT / NASS

- Dachrinne komplett reinigen
- Flachdach wischen
- Alles in Kessel / Glas mit H2O
- Nachreinigen Magnet / Papier
- + wesentlich höhere Ausbeute
- + bei allen Suchorten möglich
- Mehr Aufwand + Dreck

Grobreinigung

- Kessel ½ mit Wasser ½ mit Dreck füllen
- Grobmaterial zerkleinern mit Sieb entfernen
- Vorgang wiederholen bis grosse Teile entfernt sind
- Ganze Masse via Grobsieb in neuen Kessel

Hinweis: Erstbefüllung mit heissem Wasser / Abwasschmittel

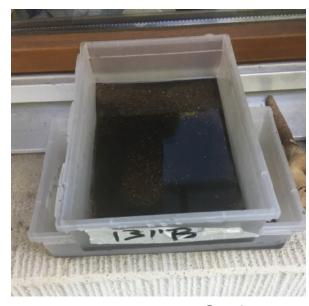
© D.Thommen

Abfall nach Grobreinigung

Feinreinigung

- Wasser 1-2 Min. setzen lassen
- Ausleeren inkl. Biomasse oberster Teil > vorsichtig!
- Durchkneten dann Wasser
- Vorgang wiederholen bis Wasser sauber ist bis 12x

Hinweis: Entnahme von magnetischem Material vor der Feinreinigung Chance MM auch mit geringer Dichte zu erfassen > schwimmen oben auf

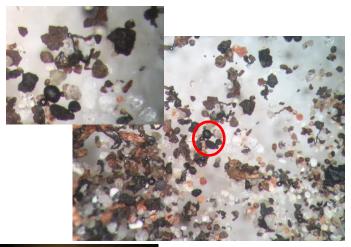

© D.Thommen

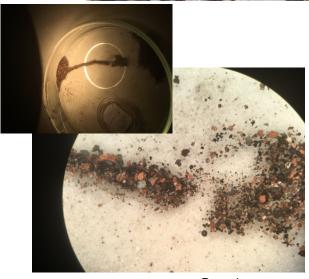
Trennen magnetische Partikel

- Material in Kunststoffbehälter
- Dabei mit Feinsieb in 2 Fraktionen
- Mit Wasser füllen, ev. Nachreinigen
- Entnahme magnetischen Partikel
 in Petrischale oder ähnlich
- Alles trocknen lassen
- Entnahme restliche magn. Partikel

Hinweis:

Bei der ersten Entnahme wird +60% der Partikel erfasst und vor Verlust gesichert


© D.Thommen

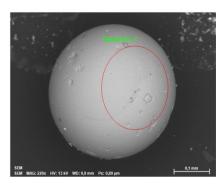

Suche nach MM Feinsuche nach Larson:

- Fraktionieren mit sieben
- Flächig durchsuchen

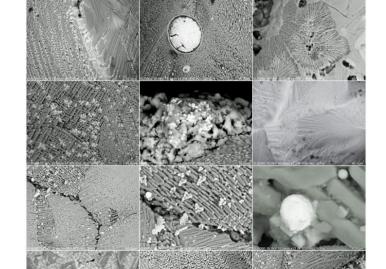
Feinsuche durch Methode DT (ohne feine Fraktioniersiebe):

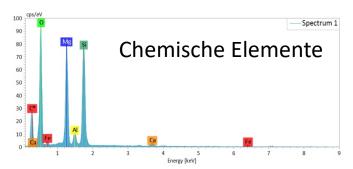
- Suchlinie bilden
- Begrenzte Anzahl Teile im Blickfeld
- Sichere Suche und Ablage

© D.Thommen


Mikroskop, Grenzen der Suche:

- 0.05mm ist untere Grenze optischer Erkennung
- Stereomikroskop mit Zoom zur raschen Identifikation
- Planlinse für randscharfes Sichtfeld (Ermüdung)
- Vergrösserung min. 60 fach, besser 100 fach (kleine MM)
- Digitale Mikroskope für Suche nicht so gut (Schärfentiefe)
- Gute Beleuchtung essenziell
- z.B gebrauchtes Wild Heerbrugg M8, ca. 1000 CHF, viele in USA auf Ebay.com, zwischendurch auf Ricardo.


5. Verifizierung - Dokumentation

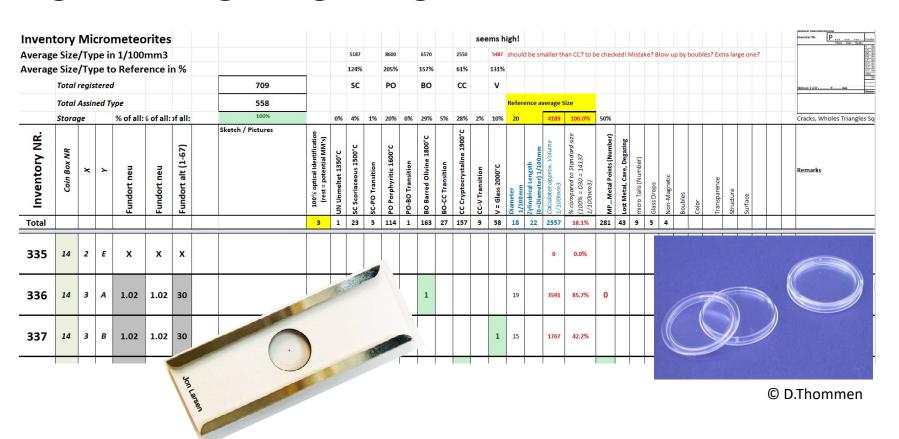

Optische Merkmale

4599

SEM

Element	Mass	Mass Norm.		
Licinciic	[%]	[%]	[%]	[%] (2 σ)
Oxygen	46,06	44,97	48,66	8,51
Carbon	22,17	21,64	31,19	10,19
Silicon	16,52	16,13	9,94	8,29
Magnesium	10,77	10,52	7,49	10,01
Iron	4,00	3,90	1,21	12,10
Calcium	1,54	1,51	0,65	9,92
Aluminium	1,36	1,33	0,85	10,32
	102,41	100,00	100,00	

© Jon Larsen, Jan Kihle, Oslo


5. Verifizierung - Dokumentation

Fundorte (periodische, einmalige)

					Wiede	rkehre	nde F	undort	e										
Nummer NEU	Fund-Nr alt, Nr. 1-67, bis 3	Bild	Datum	Individuelle Fundorte	Haus/Scheune Eingang Haus/Scheune Linde	Dach Schopf DT	Dach Garage DT	Strassenrand Eggstrasse 4 Dach Strasse George	Dach ninten George	Probe	m2 Einzugsfläche	g ungefähres Gewicht	g nicht Magn. M.	g magn. Mat. ca. Anzahl Meteoriten	Jahre Erd-Alter max	Meteoriten / g magnet.	Meteoriten	andere Leitpartikel	Bemerkungen
4.04			24.04.2024	Lüthi separater Schopf alt und neu ohne niedrige Garage															
5: Sorio	ell	i, Höl	henst	rasse															
5.00	53		25.08.2023	Soricellis Höhenstrasse 4433 Ramlinsburg Dachrinnen										3	#	*******			Haus (vorne kaum Material!) und Jägerhau komplett > keine MM?!!! Grund nicht bekannt
5.01	14		10.02.2022	Soricellis Höhenstrasse 4433 Ramlinsburg Dachrinnen ink. B+B						Starke Dachneigung, mehrere Abläufe					ŧ	:#####	Sehr wenig Material, wohl das meiste via Kanalisation weggespült. Brauchwassertank mit Filter, aber kaum Material vorhanden in Filter und Tank		
inmal	ige	Such	orte																
100	1		11.06.1905	Alaska, Umgebung von Dawson City, Klondike						500g schwarzer Sand aus grösseren Bach und vom	1.0				-		einige unsichere Kandidaten	grosse Mengen Schleif- und Schweisssperulen (Reparaturen an Goldwaschequippment). Häufig: Mineralien, Magnetit, Pyrit, Seltener gold-Flakes, kleine Klumpen mit	Beim Goldwaschen, Restmaterial schwarze Sand

5. Verifizierung - Dokumentation

Registrierung / Lagerung MM

6. Was wir nicht suchen

Keine Mikrometeorite:

Schweissenperlen

Schleifen-Flexen

Mineralwolle

Feuerwerk

Asphalt

Ziegelmaterial

Mikrotektite

Organisches

Magnetite.....

© Jon Larsen, Jan Kihle, Oslo

6. Was wir nicht suchen

© Jon Larsen, Jan Kihle, Oslo

6. Was wir nicht suchen

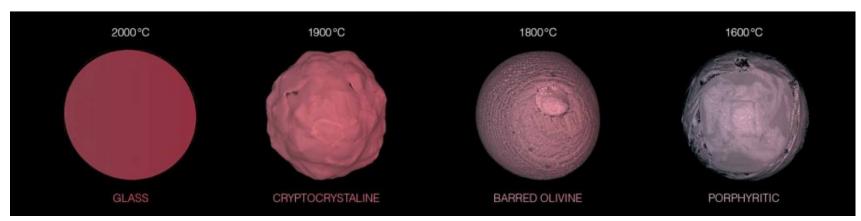
7. Typisierung MM

Standardwerk Typisierung 2008, antarktische Sammlung: The Classification of Micrometeorites by Matthew Genge, Cécile Engrand, Matthieu Gounelle, Susan Taylor, London M. J. Genge et al.

Table 1. An outline of the classification of micrometeorites.

Groups	Groups Class		Subtype	Description			
Melted MMs	Cosmic spherules (CSs)	S	CAT	Spherules with Mg/Si > 1.7 that are enriched in Ca, Ti, and Al. They have barred olivine textures.			
		S	Glass	Spherules consisting almost entirely of glass.			
		S	Cryptocrystalline	Spherules dominated by submicron crystallites and magnetite. Some include multiple domains.			
		S	Barred olivine (BO)	Spherules dominated by parallel growth olivine within glass.			
		S	Porphyritic olivine (Po)	Spherules dominated by equant and skeletal olivine within glass. Relict-bearing varieties contain unmelted minerals.			
		S	Coarse-grained	These spherules contain >50% volume relict minerals.			
		G		Spherules are dominated by magnetite dendrites within silicate glass.			
		I		Spherules dominated by magnetite, wüstite.			
Partially melted MMs	Scoriaceous MMs (ScMMs)	_	-	Vesicular particles dominated by a mesostasis of fayalitic olivine microphenocrysts within glass. ScMMs often contain relict minerals and relict matriageas.			
Unmelted MMs	Fine-grained MMs (FgMMs)	C1		Compact, chemically homogeneous FgMMs. Often contain framboidal magnetite.			
		C2		Compact, chemically heterogeneous fine-grained MMs. Often contain isolated silicates and/or tochilinite.			
		C3		Highly porous FgMMs. Often contain isolated silicates and framboidal magnetite.			
	Coarse-grained MMs (CgMMs)	Chondritic CgMMs	Porphyritic olivine and/or pyroxene	Igneous MMs dominated by pyroxene and/or pyroxene phenocrysts within glass.			
			Granular olivine and/or pyroxene	Igneous MMs dominated by pyroxene and/or oliving without significant glass.			
			Barred olivine	Igneous MMs dominated by parallel growth olivine within glass.			
			Radiate pyroxene	Igneous MMs dominated by radiating pyroxene dendrites within glass.			
			Type I/type II	Type I CgMMs are reduced particles containing Fs and/or Fa < 10 mol%. Type II CgMMs are oxidized particles with Fs and/or Fa > 10 mol%.			
		Achondritic CgMMs	-	Differentiated igneous CgMMs.			
	Refractory MMs	Porous	-	Porous particles dominated by refractory minerals.			
		Compact	-	Compact particles dominated by refractory minerals			
		Hydrated	-	Particles dominated by refractory minerals surrounded by Fe-rich phyllosilicates or their dehydroxylates.			
	Ultracarbonaceous		_	Particles dominated by carbonaceous materials with			

7. Typisierung MM

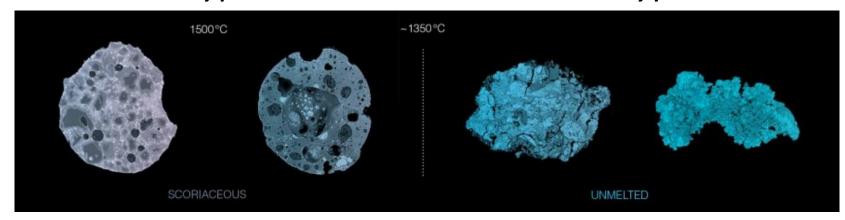

Geschmolzen, Hauptgruppe Silicate (S-Typ) häufig

V-Typ

CC-Typ

BO-Typ

PO-Typ



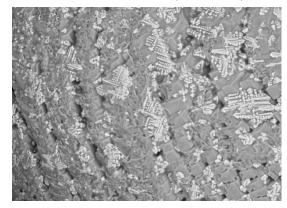
© Jon Larsen, Jan Kihle, Oslo

7. Typisierung MM

Teilgeschmolzen SC-Typ

Ungeschmolzen U-Typ

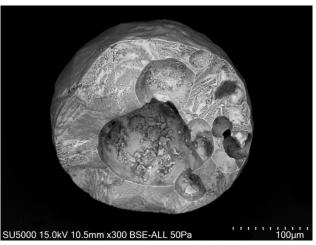
© Jon Larsen, Jan Kihle, Oslo


Sondertypen I-Typ, G-Typ und CAT-Typ

8. BO - Barred Olivine

- Häufigster MM
- Grosse Olivine, magnesium (forsterite)
- Ketten von Kristallen
- Spuren von Magnetit in Glas
- Weihnachtsbäume (Eisen)

© Jon Larsen, Jan Kihle, Oslo

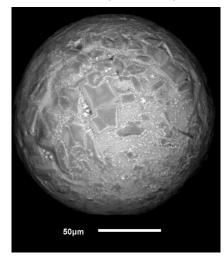

8. BO - Barred Olivine

8. CC - Cryptocrystalline

- Zweithäufigster MM
- Fein-kristalline glasige Partikel.
- Im Mikroskop nicht sichtbare Kristalle
- Oft mit Metallkonzentration
- Dynamische Formen
- Längliche Ausprägung durch Rotation
- Sonderform "Turtleback"

© Jon Larsen, Jan Kihle, Oslo

8. CC – Cryptocrystalline

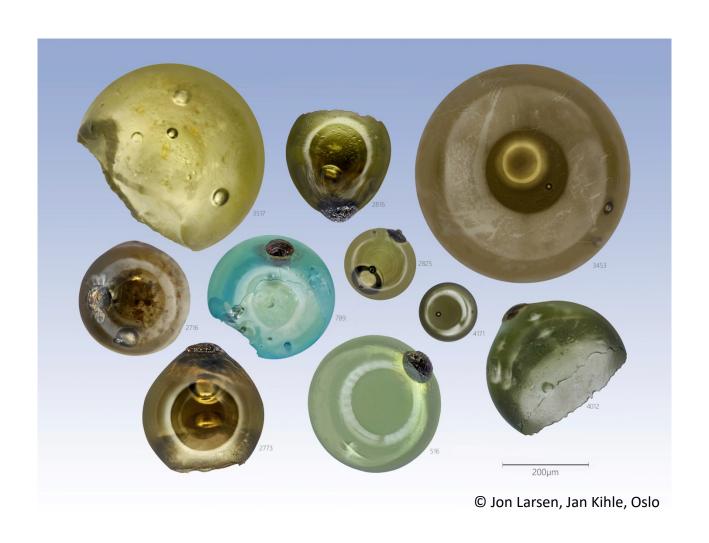

© Jon Larsen, Jan Kihle, Oslo

8. PO – Porphyric

- Grosse Olivin-Kristalle (Forsterite) in Glas
- oft braun, grün oder farblos, auch schwarz, mit mehreren Nickel-Eisen-Ansammlungen

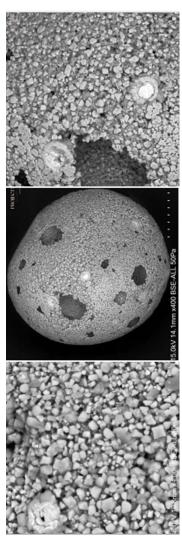
© Jon Larsen, Jan Kihle, Oslo

8. V – Glas


- Dritthäufigste Variante, höchste Temperatur
- Schwer auffindbar > magnetischer Metallkörper oft verdampft
- Luftblasen, amorphes
 Glas
- Bräunlich, grünlich, farblos, selten bläulich

© Jon Larsen, Jan Kihle, Oslo

8. V - Glas



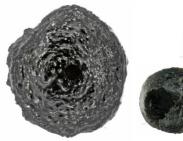
8. Non magnetic

8. SC – Scoriasceous


- Nicht vollständig aufgeschmolzen
- Charakteristische Gasblasen / Entgasung
- Mikrokristalline Olivine
- Tiefe Dichte, keine sichtbare Aerodynamik
- > Beim Waschen mit Magnet vor Spülen aus der Probe nehmen!

8. SC – Scoriasceous

8. Ungeschmolzen


8. Seltene Sonderformen

• I-Typ: viel Eisen, weltweit bisher 4 Stk, optisch schwer zu identifizieren

 G-Typ: Silicat / Glas mit Eutheral und X-Form Magnetit, Mischung aus S-Typen und I-Typen, selten

 CAT-Typ: hoher Calcium, Aluminium und Titan Anteil. Weisse BO und CC Typen. Höchsten Temperaturen ausgesetzt. (Antarktik Sammlung) noch nicht gefunden in urbanen Gebieten

© Jon Larsen, Jan Kihle, Oslo

© Jon Larsen, Jan Kihle, Oslo

Danke für Ihre Aufmerksamkeit